Halorosellinia bandonii, sp. nov

Jack D. Rogers¹ and Yu-Ming Ju²

¹Department of Plant Pathology, Washington State University, Pullman, WA 99163-6430 and ²Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115 29 Taiwan

Corresponding Author: J. D. Rogers, rogers@wsu.edu Accepted for publication May 6, 2016. http://pnwfungi.org Copyright © 2016 Pacific Northwest Fungi Project. All rights reserved.

Abstract: A previously undescribed species of Halorosellinia is described herein as H. bandonii after its collector, Robert Bandoni (deceased). It differs from the type species primarily in its much smaller ascospores.

Key words: Halorosellinia, Xylariaceae

Halorosellinia Whalley, E. B. G. Jones, K. D. Hyde & Laessøe, a monotypic genus based on H. oceanica (Schatz) Whalley et al., is distinguished from Rosellinia primarily on the basis of the stromatal base which is immersed in wood and incorporates host elements (Whalley et al., 2000). Whalley et. al. (2000) designated the peritheciun-containing structure as a pseudostroma. Despite the fact that host material is present we prefer to refer to the structure as a stroma.
In 2001 JDR received from Robert Bandoni a dead angiospermous stem bearing a partially embedded xylariaceous pyrenomycete which appeared to fit the concept of Halorosellinia. It differs from the type species in its much smaller ascospores 8-10.5 x 4.5-6 μm vs (17.9-26 x 7.5-13(-13.5) μm. We thus describe our material as a new species.

Halorosellinia bandonii J. D. Rogers & Y.-M. Ju, sp. nov.

MycoBank No. MB812778

Diagnosis: Differs from the type species primarily in its much smaller ascospores.

Etymology: Named for the distinguished mycologist, Robert Bandoni, who made the fungus available to us.

Stromata uniperitheciate, 0.5-0.8 mm diam, solitary, partially embedded in decayed angiospermous wood and fused with it at the base. Stromata brittle, dull black, enclosing perithecia that are easily removed, i.e. rosellinoid. Ostioles papillate. Perithecia spherical, 0.3-0.5 mm diam. Asci long-stipitate, ca. 90 μm total length, the spore-bearing part ca. 60 μm long, 6 μm broad. Ascus apical ring cylindrical, often distorted, bluing in Melzer’s iodine reagent, 1.5 μm high, 2.2 μm broad. Ascospores brown, ellipsoid to ellipsoid-inequilateral, smooth, unicellular, 8-10.5 x 4.5-6 μm, with spore-length germination slit. Paraphyses abundant. Anamorph unknown.

Specimen examined: USA, Florida, Collier Co., Corkscrew Swamp Sanctuary NE Naples, on decaying angiospermous branch, leg. Robert Bandoni, 3.25.2001 (WSP 72743, HOLOTYPE).

![Fig. 1. Halorosellinia bandonii. Spore-bearing part of ascus mounted in Melzer's iodine reagent showing blued (amyloid) ring. Bar = 8 μm. Fig. 2. Halorosellinia bandonii. Two perithecial stromata partially submerged in bark. Bar=0.3 mm.](image)

Notes: _Halorosellinia bandonii_ differs from _H. oceanica_ in the much larger ascospores of the latter (see earlier herein). Both species feature stromata partially embedded in wood with woody material incorporated in the bases. _H. oceanica_ (as _Hypoxylon_ was typified on material from Florida, but is found in mangrove environments, world-wide (Whalley et al., 2000). _H. bandonii_ is currently known from the type location. A genus with similarities to _Halorosellinia is Guestia_ S. J. D. Smith & K. D. Hyde. We have not examined material of that genus.

Acknowledgments: We thank Michael J. Adams for aid with photography.

Literature cited:

Whalley, A. J. S., E. B. Gareth Jones, Kevin D. Hyde & Thomas Laessoe. 2000. _Halorosellinia_ gen. nov. to accommodate _Hypoxylon oceanicum_, a common mangrove species. Mycological Research 104: 368-374. http://dx.doi.org/10.1017/S0953756299001409